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Problem: (p 104, #8)
Show that the half-life of a radioactive substance is, in general,

(ta —t1) In(2)

b= AL Ay

where A; = A(tl) and Ay = A(tg), t1 < ta.

Solution:
A radioactive substance’s rate of decay is proportional to the amount of substance present at any time.

From this we get a generic form of the equation:

dA
dt

We are given that A; = A(t1) and As = A(ta), t1 < ta. It is also useful to define A(0) as Ao.
Rearranging and then integrating equation (1) yields the following:

= kA (1)

dA
— = kdt
/ d4 / ke dt
n(A) =kt+ C,
eln(A) — kO
A =eCrelt
A=CeM (2)
Assuming that A(0) = Ay,
Ag = CeFO
C =4
A= Aget (3)

Plugging in A(t1) = Ay and A(t) = As yields:

Ay = ApeF and Ay = Aget?

Ay Ay
AO 7616251 and A() = 76]“52
Combining yields:
Ay A
ekti T ckt2

Solving for k yields:

Ay Ay
hl ek’T = ln ekitg)

In(A;) — In(e*) = In(Ay) — In(e**2)
—ktl + ktg = ln(Ag) — ln(Al)
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The half-life of a substance is the time it takes for half of the substance to disappear A(t;/;) =
Plugging this into equation (4) and solving for ¢, yields:

Ao
AO ln(Tl)t
7 = Aoe(t2*tl) 1/2

11,(%)
— = e (t2—t1)

w(l) - (%),

(t2 —t1)

t1/2

o (tg — tl) 111(2)
o h’l(Al/AQ) (5)



Problem: (p 104, #12)

A thermometer is taken from an inside room to the outside where the air temperature is 5°F. After 1
minute the thermometer reads 55°F, and after 5 minutes the reading is 30°F. What is the initial temperature
of the room.

Solution:

ar

o k(T —Ty) (6)

We know the following:
T,, = 5°F, T(1) = 55°F, T(5) = 30°F.
It is also useful to define T'(0) = Typ. From Equation (6) we get:

dT
2 k(T —
o = k(T =5)
ar
dr

In(T — 5) = kt + O
T_5= ekt+01

T=Ce+5 (7)
Plugging in T'(0) = Tj yields the following;:
To = Ce*® 4+ 5
C=Ty—-5
T = (Ty — 5)e** +5 (8)

Plugging in T'(1) = 55 and T'(5) = 30 yields the following:
55 = (Tp — 5)e + 5 and 30 = (T — 5)e"® +5
50 = (Ty — 5)eX and 25 = (T — 5)e*

(2 T3 _ g
Ty —5 50
In(0.5) = 4k
In(0.5)
k= 4

Plugging this & into In(50/(Ty — 5)) = k yields:

. (Tosg 5) _ lnf)

50 — eln(0.5)/4
To—5
50 .
Th = “m(05)/1 + 5 =~ 64.46035575°F



Problem: (p 106, #26)

Beer containing 6% alcohol per gallon is pumped into a vat that initially contains 400 gallons of beer at
3% alcohol. The rate at which the beer is pumped in is 3 gallons per minute, whereas the mixed liquid is
pumped out at a rate of 4 gallons per minute. Find the number of gallons of alcohol A(t) in the tank at any
time. What is the percentage of alcohol in the tank after 60 minutes? When is the tank empty?

Solution:

If A(t) is the amount present at any time, then % is that rate at which the amount of alcohol is changing.
dA . .
i (rate of subs entering) — (rate of subs leaving) = Ry — R»

6 gal alcohol 3 gal solution gal
Ry = - - =0.18=——
100 gal solution 1 min

R ( A gal alcohol ) (4 gal solution> 4A  gal
0 =

400 — ¢t gal solution 1 min ~ 400 — ¢ min
aa _ 0.18 44
d 400 — ¢
dA 4A
— =0.1
dt + 400 — ¢t 0.18 )

Equation (9) is a linear differential equation.
u(t) _ 674(1n(4007t))
p(t) = (400 — )"
d[(400 — t)"* A] = 0.18(400 — t)~*
(400 — t)=*A = 0.06(400 — t) 3 + C
A =0.06(400 — t) + C(400 — t)*
We know that A(0) = 12 so:
12 = 0.06(400 — 0) + C'(400 — 0)*

—12 = 400*C
C = —4.6875 x 10710

So the number of gallons of alcohol in the tank at any time A(?) is:

A(t) = 0.06(400 — t) — 4.6875 x 1071°(400 — t)* (10)

After 60 minutes, the percentage of alcohol is obtained by dividing the amount of alcohol remaining by
the amount of solution in the tank:

A(60) = 0.06(400 — 60) — 4.6875 x 1070(400 — 60)* ~ 14.135925 gal

Every minute, 1 gal of solution disappears from the tank so after 60 minutes, 400 — 60 = 340 gal remain.

14.135925

100 = 4.15762
310 x 100 57625%

The tank will be empty after 400 minutes because with every minute 1 gal of solution disappears.



Problem: (p 107, #34)
When forgetfulness is taken into account, the rate of memorization of a subject is given by

dA

T

where k1 > 0, ky > 0, A(¢) is the amount of material memorized in time ¢, M is the total amount to be

memorized, and M — A is the amount remaining to be memorized. Solve for A(t) and graph the solution.
Assume A(0) = 0. Find the limiting value of A as t — oo and interpret the result.

ki(M — A) — koA,

Solution:

dA

— =ki{(M — A) — kA
o 1( ) — k2

dA

— =k M —kA—kA
dt 1 1 2

dA
— =k M - A(kl + ]4)2)

dt
dA
ki M — A(kl + ]412)

/ dA B /dt
oM — Ak + k)

ln(klM — A(kl + k‘g))
—(k1 + k2)
h’l(klM — A(k‘l + ]fg)) = —t(kl + kg) + Cl
(k’lM — A(kl + kg)) = Cge_t(k1+k2)
—A(ky + kg) = Coe™tF1h2) — kg Mg
—t(k1+k2) _
026 klM (11)
—(k1 + k2)
It is given that A(0) = 0. Plugging that into Equation (11) yields:
0 C—kM
— (k1 + k2)
C=kM
kg M (e~ tRatha)y 1
B —(k1 + k2)

=dt

=t+C

A:

A(t)

As time goes on,
k‘lM(e_t(kH_kz) -1) k1

li = M
tiglo 7(1171 + kg) (kl + k2)

This can be represented graphicly:

ky ) )
(k1 + ’f?)“] v

This means that relatively quickly, the amount memorized becomes constant. That constant is always
less than the total amount to be memorized.



Problem: (p 116, #4)

Find the solution of the modified logistic equation
dP
dt

Solution:
dP
P(a—bP)(1 —cP~1)

/P(a—ch)lfl—cP—l) :/dt
/m—bz?lip—@:/dt

Partial fractions yield:
1 A

=dt

(a—bP)(1—2¢) 7a—bP+P—c
1= A(P - ¢) + B(a — bP)
1=AP — Ac+ Ba—bPB

1= (—Ac+ Ba)+ (A-bB)P

0=A-bB
A=10bB
1= —(bB)c+ Ba
1= (-bc+a)B
1
a—be
b
a—be

{ 1=—-Ac+ Ba

/(abgipc) :/[b/a(a_bzbvdJrl/g_fC)

— = P(a—bP)(1 —cP™Y), a,b,c >0

}dP:/dt

1 b 1
a—bc/[a—bP—'_P—c} dP—/dt

1

a—be

m(PC) = (t+Q)(a - be)

P-c
a—bP

P — ¢ =+t _pp)

1+Q)(a—bc)

(=ln(a—bP)+In(P —c¢)) =t+@Q, Q is a constant

P = ¢t t+@(a=be)y _ j pe(t+Q)(a=be)

P 4 belt+Q@a—be) p _ (t+Q)(a—be) | .

(1 + be(t+Q)(a—bc))P — e(t+Q)(a—bc)a +e

ae(t+@)(a—=be) |

T 1+ be(tt@)(a—bo)



Problem: (p 117, #10)
In a third-order chemical reaction the number of grams X of a compound obtained by combining three

chemicals is governed by

dX

= = kla = X)(B- X)(y - X).

Solve the equation under the assumption a # 3 # v.

Solution:
dX
(a=X)(B—X)(y—X)

t/m Xx;%mw X) /k“

1 A B C
@-X)B-X)7—-X) a-X B-X y-X
=AB-X)(v=X)+Bla-X)(v—-X)+CB - X)(y—X)
= ABy —vX —BX + X))+ Blay —aX —vX + X)) + C(By — X —1X + X?)
1= ABy — AvX — ABX + AX? + Bay — BaX — ByX + BX? + Cpy — CBX — CvX + CX?

{1:Am+3m+0w

=kdt

Partial fractions yield:

0=—-Ay— A —Ba—By—Ca—-Cp
0=A+B+C

1=Apvy+ Bay+ Cap
0=—-A(y+p8) = Bla+7v) - Cla+pB)
0=A+B+C

A=-B-C

0=—A(y+B) — Bla+7) — Cla+5)

0=(B+C)(y+p)—Bla+ty) - Cla+b)
0=B(y+8)+C(y+8)—Bla+v)—Cla+p)
0=B(y+B-a—-7)+Cy+B—a-p)
0=B(B-a)+C(y—0a)

~ —Cy—a)
B—W

1= ABv+ Bay+ Cap
1=(-B-C)Bv+ Bay+Caf
1=-Bpy—-Cpy+ Bay+ Cap
1= B(ay = f7) + C(af = f7)
1= By(a—p)+Chla—7)
l1=-By(f-a)-CB(y—a)

5 a) - OBy )

=



A=-B-C
—1 1
A= B0 -8 -a0-9
L @) -
B-a0 =B -a)
1
CErCETS)

A =
Now back to the differential equation:
dX /
= [ kdt
/ (a—X)(B—X)(v—X)

1 1 1
/[(ﬁa)(va) DG <wa><vﬁ>] dX — /kdt

a—X 8—-X v—X

—In(a — X) h@B-X) WK -X)
Boli—a) G- -B G-aG-p§ e




BONUS Problem: (p 118, #14)

According to Stefan’s law of radiation, the rate of change of temperature from a body at absolute tem-
perature T is

dr
— =K1 -1

where T,, is the absolute temperature of the surrounding medium. Find a solution of this differential
equation. It can be shown that when T — T,,, is small compared to T;,, this particular equation is closely
approximated by Newton’s law of cooling,

dT
— =k(T -T,
Solution:
dT
i T4 _ T4
= K(T' = T4)
O — W~ T + T (17 +T2)

dr
(T - Tm)(T + Tm)<T2 + TTQn)

=kdt

dT

Partial fractions yield:

1 A . B +CT+D
(T -T, )T +T,)(T?2+T2) T-T, T+T, T>2+T2

1= A(T+Ty)(T* +T2) 4+ B(T = T0,)(T? + T7.) + (CT + D)(T — T )(T + Tn)
1= AT*+ T T? + T2T + T3) + B(T? — T, 7> + TAT — T2) + (CT + D)(T? — T?)
1= AT® + AT, T? + AT2T + AT? + BT® — BT,,T° + BT2T — BT} + CT? + DT? — CTT? — DT,

1= (A+ B+ C)T? + (AT, — BTy, + D)T? + (AT + BT?2, — CT2)T + (AT2 — BT2 — DT?)

0=A+B+C

0= AT, — BT,, + D
0= AT? + BT? — CT?
1= AT3 — BT? — DT?

A=-B-C

0= (-B-C)T2 + BT% — CT2,

0= —BT? — CT2 + BT2 — CT?,

0=—-20T%
C=0
A=-B

0= AT,, — BT,, + D

0= —BT,, — BT,, + D
0= —2BT,, + D



D = 2BT,,

1= AT} — BT} — DT?,
1 = -BT3 — BT? — 2BT,,T?
1= -2BT3 —2BT?3
1 = —4BT3
—1
ATy,

D =2BT,,

-1
D=2——T,
T3,
-1

:ﬂ

Now back to the differential equation:

T
/(T*Tm)(T+T )T2+12) Z/kdt

1 —1
4T3 4T3 272,
u m dl' = | kdt
/(TTm+T+T T2+T2> /

(T -T,) W(T+T,) 1 ar
4T3 4T3 QT%/TLT,% =ht+C
In equation (12),
dr
T2 -T2
Let T, tan(0) =T
and dT = T, sec?(0) df
/ ar / T, sec?(6) 40 —
T2 -T2 | (Tmtan(9)2+72
Ty sec? (6
[T,
T2 tan®(0) + T2
/ T 5202(0) 40 —
T2 (tan®(9) + 1)
o2
/ sec?(6) 4o —
T, sec?(6)
@
T
—tan~! T
Tm T/’n
(T - Tp,) Wn(T+T,) 1 ar
AT3 4T3 2T%/T2—T% =ht+C
n(T-T,) WT+T,) 1 1 (T\_
ATS ATS oz T, e\ ) RO
(T —-Tp) WT+Tn) 1 (T
— — t — | =kt
ATS ATS o3 "\ T, e

10



