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Theorem 4.2, Axiom 3
Let u, v, and w be vectors in <n, and let c and d be scalars.

(u + v) + w = u + (v + w)

Proof: Let u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn), and w = (w1, w2, . . . , wn) be vectors in <n. Note that
ui, vi, and wi are real numbers for all i. Consider

(u + v) + w = ((u1, u2, . . . , un) + (v1, v2, . . . , vn)) + (w1, w2, . . . , wn)

= ((u1 + v1), (u2 + v2), . . . , (un + vn)) + (w1, w2, . . . , wn) (Definition of Addition of Vectors)

= ((u1 + v1) + w1, (u2 + v2) + w2, . . . , (un + vn) + wn) (Definition of Addition of Vectors)

= (u1 + (v1 + w1), u2 + (v2 + w2), . . . , un + (vn + wn)) (Associative Property of Real Numbers)

= (u1, u2, . . . , un) + ((v1 + w1), (v2 + w2), . . . , (vn + wn)) (Definition of Addition of Vectors)

= (u1, u2, . . . , un) + ((v1, v2, . . . , vn) + (w1, w2, . . . , wn)) (Definition of Addition of Vectors)

= u + (v + w)

QED

Theorem 4.2, Axiom 4
Let u, v, and w be vectors in <n, and let c and d be scalars.

u + 0 = u

Proof: Let u = (u1, u2, . . . , un) be a vector in <n. Note that ui is a real number for all i. Consider

u + 0 = (u1, u2, . . . , un) + (0, 0, . . . , 0)

= (u1 + 0, u2 + 0, . . . , un + 0) (Definition of Addition of Vectors)

= (u1, u2, . . . , un) (Since 0 is the Additive Identity of Real Numbers)

= u

QED

Theorem 4.2, Axiom 7
Let u, v, and w be vectors in <n, and let c and d be scalars.

c(u + v) = cu + cv
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Proof: Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) be vectors in <n. Let c be a scalar. Note that ui

and vi are real numbers for all i. Consider

c(u + v) = c ((u1, u2, . . . , un) + (v1, v2, . . . , vn))

= c ((u1 + v1), (u2 + v2), . . . , (un + vn)) (Definition of Addition of Vectors)

= (c(u1 + v1), c(u2 + v2), . . . , c(un + vn)) (Definition of Scalar Multiplication)

= (cu1 + cv1, cu2 + cv2, . . . , cun + cvn) (Distributive Property of Real Numbers)

= (cu1, cu2, . . . , cun) + (cv1, cv2, . . . , cvn) (Definition of Addition of Vectors)

= c(u1, u2, . . . , un) + c(v1, v2, . . . , vn) (Definition of Scalar Multiplication)

= cu + cv

QED

Theorem 4.3, Axiom 3
Let v be a vector in <n, and let c be a scalar.

0v = 0

Proof: Let v = (v1, v2, . . . , vn) be a vector in <n and let c be a scalar. Note that vi is a real number for all
i. Consider

0v = 0(v1, v2, . . . , vn)

= (0v1, 0v2, . . . , 0vn) (Definition of Scalar Multiplication)

= (0, 0, . . . , 0) (Since 0 multiplied by any real number is 0)

= 0

QED

Theorem 4.3, Axiom 5
Let v be a vector in <n, and let c be a scalar.

If cv = 0, then c = 0 or v = 0

Proof: Let v = (v1, v2, . . . , vn) be a vector in <n and let c be a scalar such that cv = 0. Note that vi is a
real number for all i. From the definition of scalar multiplication cv = c(v1, v2, . . . , vn) = (cv1, cv2, . . . , cvn).
Since cv = 0, (cv1, cv2, . . . , cvn) = (0, 0, . . . , 0). This implies that cv1 = 0, cv2 = 0, . . ., cvn = 0. By the zero
factor property of real numbers, cvi = 0 implies that c = 0 or vi = 0 for all i. If c = 0 we are done. If c 6= 0
then vi = 0 for all i or (v1, v2, . . . vn) = (0, 0, . . . , 0) which means v = 0. QED

Theorem 4.3, Axiom 6
Let v be a vector in <n, and let c be a scalar.

−(−v) = v
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Proof: Let v = (v1, v2, . . . , vn) be a vector in <n. Note that vi is a real number for all i. Consider

−(−v) = −1(−1(v1, v2, . . . , vn))

= −1(−1v1,−1v2, . . . ,−1vn) (Definition of Scalar Multiplication)

= (−1(−1v1),−1(−1v2), . . . ,−1(−1vn)) (Definition of Scalar Multiplication)

= ((−1 · −1)v1, (−1 · −1)v2, . . . , (−1 · −1)vn) (Associative Property of Real Numbers)

= (1v1, 1v2, . . . , 1vn) (−1 · −1 = 1)

= (v1, v2, . . . , vn) (Since 1 is the Multiplicative Identity of Real Numbers)

= v

QED

Sec 4.2, 27
Prove in full detail that M2,2, with the standard operations, is a vector space.

Proof: Let A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
, and C =

(
c11 c12
c21 c22

)
be elements of M2,2. Let d and

e be scalars. Note that aij , bij , and cij are real numbers.

1. A + B is in M2,2.

A + B =

(
a11 a12
a21 a22

)
+

(
b11 b12
b21 b22

)
=

(
a11 + b11 a12 + b12
a21 + b21 a22 + b22

)
(Definition of Addition of Matrices)

Since the real numbers are closed under addition, aij+bij is a real number. Therefore

(
a11 + b11 a12 + b12
a21 + b21 a22 + b22

)
is an element of M2,2.

2. A + B = B + A.

A + B =

(
a11 a12
a21 a22

)
+

(
b11 b12
b21 b22

)
=

(
a11 + b11 a12 + b12
a21 + b21 a22 + b22

)
(Definition of Addition of Matrices)

B + A =

(
b11 b12
b21 b22

)
+

(
a11 a12
a21 a22

)
=

(
b11 + a11 b12 + a12
b21 + a21 b22 + a22

)
(Definition of Addition of Matrices)

=

(
a11 + b11 a12 + b12
a21 + b21 a22 + b22

)
(Commutative Property of Real Numbers)

Therefore A + B = B + A.

3. A + (B + C) = (A + B) + C.

A + (B + C) =

(
a11 a12
a21 a22

)
+

((
b11 b12
b21 b22

)
+

(
c11 c12
c21 c22

))
=

(
a11 a12
a21 a22

)
+

(
b11 + c11 b12 + c12
b21 + c21 b22 + c22

)
(Definition of Addition of Matrices)

=

(
a11 + (b11 + c11) a12 + (b12 + c12)
a21 + (b21 + c21) a22 + (b22 + c22)

)
(Definition of Addition of Matrices)
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(A + B) + C =

((
a11 a12
a21 a22

)
+

(
b11 b12
b21 b22

))
+

(
c11 c12
c21 c22

)
=

(
a11 + b11 a12 + b12
a21 + b21 a22 + b22

)
+

(
c11 c12
c21 c22

)
(Definition of Addition of Matrices)

=

(
(a11 + b11) + c11 (a12 + b12) + c12
(a21 + b21) + c21 (a22 + b22) + c22

)
(Definition of Addition of Matrices)

=

(
a11 + (b11 + c11) a12 + (b12 + c12)
a21 + (b21 + c21) a22 + (b22 + c22)

)
(Associative Property of Real Numbers)

Therefore A + (B + C) = (A + B) + C.

4. M2,2 has a zero vector 0 such that for every A in M2,2, A + 0 = A.

Define the zero vector to be 0 =

(
0 0
0 0

)
.

A + 0 =

(
a11 a12
a21 a22

)
+

(
0 0
0 0

)
=

(
a11 + 0 a12 + 0
a21 + 0 a22 + 0

)
(Definition of Matrix Addition)

=

(
a11 a12
a21 a22

)
(Since 0 is the Additive Identity of Real Numbers)

= A

5. For every A in M2,2, there is a vector in M2,2 denoted by −A such that A + (−A) = 0.

Define the additive inverse to be −A =

(
−a11 −a12
−a21 −a22

)
.

A + (−A) =

(
a11 a12
a21 a22

)
+

(
−a11 −a12
−a21 −a22

)
=

(
a11 + (−a11) a12 + (−a12)
a21 + (−a21) a22 + (−a22)

)
(Definition of Addition of Matrices)

=

(
0 0
0 0

)
(Additive Inverses of Real Numbers)

= 0

6. dA is in M2,2.

dA = d

(
a11 a12
a21 a22

)
=

(
da11 da12
da21 da22

)
(Definition of Scalar Multiplication)

Since the real numbers are closed under multiplication, daij is a real number. Therefore

(
da11 da12
da21 da22

)
is an element of M2,2.

7. d(A + B) = dA + dB.

d(A + B) = d

((
a11 a12
a21 a22

)
+

(
b11 b12
b21 b22

))
= d

(
a11 + b11 a12 + b12
a21 + b21 a22 + b22

)
(Definition of Addition of Matrices)
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=

(
d(a11 + b11) d(a12 + b12)
d(a21 + b21) d(a22 + b22)

)
(Definition of Scalar Multiplication)

=

(
da11 + db11 da12 + db12
da21 + db21 da22 + db22

)
(Distributive Property of Real Numbers)

dA + dB = d

(
a11 a12
a21 a22

)
+ d

(
b11 b12
b21 b22

)
=

(
da11 da12
da21 da22

)
+

(
db11 db12
db21 db22

)
(Definition of Scalar Multiplication)

=

(
da11 + db11 da12 + db12
da21 + db21 da22 + db22

)
(Definition of Addition of Matrices)

Therefore d(A + B) = dA + dB.

8. (d + e)A = dA + eA.

(d + e)A = (d + e)

(
a11 a12
a21 a22

)
=

(
(d + e)a11 (d + e)a12
(d + e)a21 (d + e)a22

)
(Definition of Scalar Multiplication)

=

(
da11 + ea11 da12 + ea12
da21 + ea21 da22 + ea22

)
(Distributive Property of Real Numbers)

dA + eA = d

(
a11 a12
a21 a22

)
+ e

(
a11 a12
a21 a22

)
=

(
da11 da12
da21 da22

)
+

(
ea11 ea12
ea21 ea22

)
(Definition of Scalar Multiplication)

=

(
da11 + ea11 da12 + ea12
da21 + ea21 da22 + ea22

)
(Definition of Addition of Matrices)

Therefore (d + e)A = dA + eA.

9. d(eA) = (de)A.

d(eA) = d

(
e

(
a11 a12
a21 a22

))
= d

(
ea11 ea12
ea21 ea22

)
(Definition of Scalar Multiplication)

=

(
d(ea11) d(ea12)
d(ea21) d(ea22)

)
(Definition of Scalar Multiplication)

(de)A = (de)

(
a11 a12
a21 a22

)
=

(
(de)a11 (de)a12
(de)a21 (de)a22

)
(Definition of Scalar Multiplication)

=

(
d(ea11) d(ea12)
d(ea21) d(ea22)

)
(Associative Property of Real Numbers)

Therefore d(eA) = (de)A.
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10. 1(A) = A.

1(A) = 1

(
a11 a12
a21 a22

)
=

(
1a11 1a12
1a21 1a22

)
(Definition of Scalar Multiplication)

=

(
a11 a12
a21 a22

)
(Since 1 is the Multiplicative Identity of Real Numbers)

= A

QED

Sec 4.2, 30
Let V be the set of all positive real numbers. Determine whether V is a vector space with the following
operations.

x + y = xy Addition

cx = xc Scalar Multiplication

If it is, verify each vector space axiom: if not, state all vector space axioms that fail.

Answer: Yes, it is a vector space.
Proof: Let V be the set of all positive real numbers. Let x, y, and z be elements of V . Let c and d be
scalars.

1. x + y is in V .
x + y = xy

Since the real numbers are closed under multiplication, xy is a real numbers. Since x and y are positive
numbers, xy is also positive. Therefore xy is an element of V .

2. x + y = y + x.

x + y = xy (Definition of Addition)

y + x = yx (Definition of Addition)

= xy (Commutative Property of Multiplication of Real Numbers)

Therefore x + y = y + x.

3. x + (y + z) = (x + y) + z.

x + (y + z) = x + yz (Definition of Addition)

= x(yz) (Definition of Addition)

(x + y) + z = xy + z (Definition of Addition)

= (xy)z (Definition of Addition)

= x(yz) (Associative Property of Real Numbers)

Therefore x + (y + z) = (x + y) + z.
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4. V has a zero vector 0 such that for every x in V , x + 0 = x.

Define the zero vector to be 0 = 1.

x + 0 = x + 1

= x · 1 (Definition of Addition)

= x (Since 1 is the Multiplicative Identity of Real Numbers)

5. For every x in V , there is a vector in V denoted by −x such that x + (−x) = 0.

Define the additive inverse to be −x = 1
x .

x + (−x) = x +
1

x

= x
1

x
(Definition of Addition)

(Note that
1

x
is defined since x is always positive and thus never 0)

= 1 (Multiplicative Inverses of Real Numbers)

= 0

6. cx is in V .
cx = xc(Definition of Scalar Multiplication)

A positive real number raised to a real power is always a positive real number so xc is an element of
V .

7. c(x + y) = cx + cy.

c(x + y) = c(xy) (Definition of Addition)

= (xy)c (Definition of Scalar Multiplication)

= xcyc (Product to a Power Property)

cx + cy = xc + yc (Definition of Scalar Multiplication)

= xcyc (Definition of Addition)

Therefore c(x + y) = cx + cy.

8. (c + d)x = cx + dx.

(c + d)x = xc+d (Definition of Scalar Multiplication)

= xcxd (Product of Like Bases Property)

cx + dx = xc + xd (Definition of Scalar Multiplication)

= xcxd (Definition of Addition)

Therefore (c + d)x = cx + dx.

9. c(dx) = (cd)x.

c(dx) = cxd (Definition of Scalar Multiplication)

=
(
xd

)c
(Definition of Scalar Multiplication)

= xdc (Power to a Power Property)

= xcd (Commutative Property Property of Real Numbers)

(cd)x = xcd (Definition of Scalar Multiplication)

Therefore c(dx) = (cd)x.
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10. 1(x) = x.

1(x) = x1 (Definition of Scalar Multiplication)

= x (Since any number to the power 1 is itself)

QED

Sec 4.2, 32
Prove that in a given vector space V , the additive inverse of a vector is unique.

Proof: Let V be a vector space. Let u be a vector in V . Assume that vector u has two additive inverses,
v and w. From the definition of an additive inverse we obtain

u + v = 0

u + w = 0.

Since u + v and v + w are both equal to 0 they are equal to each other:

u + v = u + w.

Adding v to the left side of each yields

v + u + v = v + u + w.

Since v + u = 0, the above expression becomes

0 + v = 0 + w.

By VS property 4,
v = w.

This contradicts our assumption that v 6= w. Thus the additive inverse of a vector is unique. QED
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