2011 LSMSA Math Competition

Calculus Individual

1. Find the equations of lines in y = mx + b form if the lines pass through the point (2,4) and are tangent to the parabola $2x^2 - 3x + 10 = y$.

2. Evaluate
$$\lim_{n\to\infty} \frac{5n^6}{(5n+2)^7-5n^7}$$
.

3. Evaluate
$$\lim_{b \to 1^-} \int_0^b \frac{dx}{\sqrt{1-x^2}}$$
.

4. Evaluate
$$\lim_{x \to \infty} x \sin\left(\frac{1}{x}\right)$$
.

5. Evaluate
$$\frac{\frac{d^8}{dx^8} \left[x^8 + x^7 + x^6 \right]}{\frac{d^6}{dx^6} \left[x^6 + x^5 + x^4 \right]}.$$

6. Nick Mead rides his bike along a parabolic valley, $y=x^2$, while looking at a babe at point (0,1). He moves with a constant x velocity, $\frac{dx}{dt}=3$. He starts from the far left of the valley. At what rate, $\frac{d\theta}{dt}$, will he have to move his eyes to keep track of his Goddess's beauty when he is at (-1,1)? That is, assuming he doesn't fall.

7. Find
$$f'(2)$$
 if $f(x) = e^{g(x)}$ and $g(x) = \int_2^x \frac{t}{1+t^4} dt$.

- 8. Find $\int_{-50}^{50} \sin(\sin(x)) dx$.
- 9. In terms of its height h and width w, find a formula for the area under a parabola.
- 10. Euler's gamma function $\Gamma(x)$ ("gamma of x"; Γ is a Greek capital g) uses an integral to extend the factorial function from the nonnegative integers to other real values. The formula is

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt, \qquad x > 0.$$

If n is a nonnegative integer, $\Gamma(n+1) = n!$

- a. Show that $\Gamma(1) = 1$.
- b. Then apply integration by parts to the integral for $\Gamma(x+1)$ to show that $\Gamma(x+1)=x\Gamma(x)$.
- 11. Find the slope of a line tangent to a circle of radius 2 centered at the origin at the point $(2, \theta)$ (in polar coordinates) in terms of θ .
- 12. Use Leibniz's Rule to find the value of x that maximizes the value of the integral

$$\int_{x}^{x+3} t(5-t) \, dt.$$

- 13. Evaluate $\lim_{x\to 0^+} (\cos(\sqrt{x})^{1/x})$.
- 14. Evaluate (in simplest form) $\frac{d}{dx} \left[\frac{\sin^3(x)}{\cos(x)} + \frac{1}{2} (\sin(2x)) \right]$.
- 15. a. If $\int_0^1 7f(x) dx = 7$, does $\int_0^1 f(x) dx = 1$?

b. If
$$\int_0^1 f(x) dx = 4$$
 and $f(x) \ge 0$, does $\int_0^1 \sqrt{f(x)} dx = \sqrt{4} = 2$?