2011 LSMSA Math Competition

Calculus Individual

1. Find the equations of lines in y = mx + b form if the lines pass through the point (2,4) and are tangent to the parabola $2x^2 - 3x + 10 = y$.

Solution: For the two lines to intersect $mx + b = 2x^2 - 3x + 10$. Since the two slopes are equal m=4x-3. To pass through (2, 4), 4=2m+b. Substituting the third equation into the first, $mx + 4 - 2m = 2x^2 - 3x + 10$. Substituting the second equation in results in $4x^2 - 3x + 4 - 8x + 6 =$ $2x^2 - 3x + 10$. Simplifying: x = 0 and x = 4. For x = 0, m = -3 so y = -3x + 10. For x = 4, m = 13so y = 13x - 22.

2. Evaluate $\lim_{n \to \infty} \frac{5n^6}{(5n+2)^7 - 5n^7}$.

Solution: Since the exponent of the denominator is greater than the exponent of the numerator, the answer is 0.

3. Evaluate $\lim_{b \to 1^-} \int_0^b \frac{dx}{\sqrt{1-x^2}}$.

Solution: $\lim_{b \to 1^-} \int_0^b \frac{dx}{\sqrt{1-x^2}} = \lim_{b \to 1^-} \left[\arcsin(x) \right]_0^b = \lim_{b \to 1^-} \left(\arcsin(b) - \arcsin(0) \right) = \frac{\pi}{2}.$

4. Evaluate $\lim_{x \to \infty} x \sin\left(\frac{1}{x}\right)$.

Solution: $\lim_{x \to \infty} x \sin\left(\frac{1}{x}\right) = \lim_{x \to \infty} \frac{\sin\left(\frac{1}{x}\right)}{\frac{1}{x}} = 1.$

5. Evaluate $\frac{\frac{d^8}{dx^8} \left[x^8 + x^7 + x^6 \right]}{\frac{d^6}{dx^6} \left[x^6 + x^5 + x^4 \right]}.$ Solution: $\frac{\frac{d^8}{dx^8} \left[x^8 + x^7 + x^6 \right]}{\frac{d^6}{dx^6} \left[x^6 + x^5 + x^4 \right]} = \frac{8!}{6!} = 56.$

6. Nick Mead rides his bike along a parabolic valley, $y = x^2$, while looking at a babe at point (0,1). He moves with a constant x velocity, $\frac{dx}{dt} = 3$. He starts from the far left of the valley. At what rate, $\frac{d\theta}{dt}$ will he have to move his eyes to keep track of his Goddess's beauty when he is at (-1,1)? That is, assuming he doesn't fall.

1

Solution: $\tan(\theta) = \frac{y-1}{x} = \frac{x^2-1}{x}$. $\sec^2(\theta) \frac{d\theta}{dt} = \frac{(2x)x+(1-x^2)}{x^2} \frac{dx}{dt} = \frac{x^2+1}{x^2} \frac{dx}{dt}$. $\sec^2(\theta) = \tan^2(\theta) + 1 = \left(\frac{x^2-1}{x}\right)^2 + 1$. At x = -1, $\sec^2(\theta) = 1$. $\frac{d\theta}{dt} = 3\left(\frac{2}{1}\right) = 6$.

- 7. Find f'(2) if $f(x) = e^{g(x)}$ and $g(x) = \int_2^x \frac{t}{1+t^4} dt$. Solution: $f'(x) = g'(x)e^{g(x)}$. $g'(x) = \frac{x}{1+x^4}$. $g'(2) = \frac{2}{17}$ and g(x) = 0. $f'(2) = g'(2)e^{g(2)} = \frac{2}{17}e^0 = \frac{2}{17}$.
- 8. Find $\int_{-50}^{50} \sin(\sin(x)) dx$. Solution: Since $\sin(\sin(x))$ is an odd function, under symmetric limits the integral is 0.
- 9. In terms of its height h and width w, find a formula for the area under a parabola. Solution: The formula for the generic parabola is y = ax(w-x). The vertex is at $y = a\left(\frac{w}{2}\right)^2 = h$. $a = \frac{4h}{w^2}$. The area is $A = \int_0^w xw x^2 dx = \frac{4h}{w^2} \left[\frac{wx^2}{2} \frac{x^3}{3}\right]_0^w = \frac{4h}{w^2} \left(\frac{w^3}{2} \frac{w^3}{3}\right) = \frac{4h}{w^2} \left(\frac{w^3}{6}\right) = \frac{2}{3}hw$.
- 10. Euler's gamma function $\Gamma(x)$ ("gamma of x"; Γ is a Greek capital g) uses an integral to extend the factorial function from the nonnegative integers to other real values. The formula is

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt, \qquad x > 0.$$

If n is a nonnegative integer, $\Gamma(n+1) = n!$

- a. Show that $\Gamma(1) = 1$.
- b. Then apply integration by parts to the integral for $\Gamma(x+1)$ to show that $\Gamma(x+1) = x\Gamma(x)$.

Solution:

a.

$$\Gamma(1) = \int_0^\infty t^0 e^{-t} dt = \left[-e^{-t} \right]_0^\infty = 0 - (-1) = 1.$$

b.

$$\Gamma(x+1) = \int_0^\infty t^x e^{-t} dt = -\left[t^x e^{-t}\right]_0^\infty + x \int_0^\infty t^{x-1} e^{-t} dt = x \Gamma(x)$$

11. Find the slope of a line tangent to a circle of radius 2 centered at the origin at the point $(2, \theta)$ (in polar coordinates) in terms of θ .

Solution:
$$y = 2\sin(\theta)$$
 and $x = 2\cos(\theta)$. $\frac{dy}{dx} = \frac{\dot{y}}{x} = -\frac{2\cos(\theta)}{2\sin(\theta)} = -\cot(\theta)$.

12. Use Leibniz's Rule to find the value of x that maximizes the value of the integral

$$\int_{x}^{x+3} t(5-t) dt.$$

Solution:
$$\frac{d}{dx} \int_{x}^{x+3} t(5-t) dt = 0$$
. $(x+3)(5-x-3) - x(5-x) = 0$ which simplifies to $x = 1$.

13. Evaluate $\lim_{x\to 0^+} (\cos(\sqrt{x})^{1/x})$.

Solution: $y = \lim_{x \to 0^+} (\cos(\sqrt{x})^{1/x}$. Taking the natural logarithm of both sides yields $\ln(y) = \lim_{x \to 0^+} \frac{1}{x} \ln(\cos(\sqrt{x}))$. Using L'Hôpital's Rule results in $\ln(y) = \lim_{x \to 0^+} \frac{-\sin(\sqrt{x})}{2\sqrt{x}\cos(\sqrt{x})}$. Simplifying results in $\ln(y) = -\frac{1}{2}$ or $y = e^{-1/2} = \frac{1}{\sqrt{e}}$.

14. Evaluate (in simplest form) $\frac{d}{dx} \left[\frac{\sin^3(x)}{\cos(x)} + \frac{1}{2} (\sin(2x)) \right]$.

Solution:
$$\frac{d}{dx} \left[\frac{\sin^3(x)}{\cos(x)} + \frac{1}{2} \left(\sin(2x) \right) \right] = \frac{d}{dx} \left[\frac{\sin^3(x)}{\cos(x)} + \sin(x) \cos(x) \right] = \frac{d}{dx} \left[\frac{\sin(x)}{\cos(x)} \left(\sin^2(x) + \cos^2(x) \right) \right] = \frac{d}{dx} \tan(x) = \sec^2(x).$$

15. a. If $\int_0^1 7f(x) dx = 7$, does $\int_0^1 f(x) dx = 1$?

b. If
$$\int_0^1 f(x) dx = 4$$
 and $f(x) \ge 0$, does $\int_0^1 \sqrt{f(x)} dx = \sqrt{4} = 2$?

Solution:

- a. Yes
- b. No