Modern Algebra Homework

Rustem Bilyalov

March 11, 2010

1 Assignment

- Write a Caley table for the group (S_3, \circ) .
- Use every element to generate a subgroup to confirm its order.
- Find the inverse of every element

2 Solution

A group $(S_3,\circ)=(\{(1),(1,2),(1,3),(2,3),(1,2,3),(1,3,2)\},\circ)$ is equal to

$$\left(\left\{\left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right), \left(\begin{array}{ccc} 1 & 3 & 2 \\ 1 & 2 & 3 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right)\right\}, \circ\right)$$

2.1 Caley Table

0	(1)	(1, 2)	(1,3)	(2,3)	(1, 2, 3)	(1, 3, 2)
(1)	(1)	(1, 2)	(1,3)	(2,3)	(1, 2, 3)	(1, 3, 2)
(1,2)	(1,2)	(1)	(1, 3, 2)	(1, 2, 3)	(2,3)	(1, 3)
(1,3)	(1,3)	(1, 2, 3)	(1)	(1, 3, 2)	(1, 2)	(2,3)
(2,3)	(2,3)	(1, 3, 2)	(1, 2, 3)	(1)	(1, 3)	(1, 2)
(1,2,3)	(1, 2, 3)	(1,3)	(2,3)	(1, 2)	(1, 3, 2)	(1)
(1, 3, 2)	(1, 3, 2)	(2,3)	(1,2)	(1,3)	(1)	(1, 2, 3)

2.2 Subgroups

2.2.1 (1)

$$<(1)>=\{(1)\}$$

 $C(\{(1)\}) = 1$. This means the order of (1) is 1.

2.2.2 (1,2)

$$\langle (1,2) \rangle = \{(1,2), (1,2) \circ (1,2)\} = \{(1,2), (1)\}$$

 $C(\{(1,2),(1)\}) = 2$. This means the order of (1,2) is 2.

2.2.3 (1,3)

$$\langle (1,3) \rangle = \{(1,3), (1,3) \circ (1,3)\} = \{(1,3), (1)\}$$

 $C(\{(1,3),(1)\}) = 2$. This means the order of (1,3) is 2.

2.2.4 (2,3)

$$<(2,3)>=\{(2,3),(2,3)\circ(2,3)\}=\{(2,3),(1)\}$$

$$C(\{(2,3),(1)\})=2. \text{ This means the order of } (2,3) \text{ is } 2.$$

2.2.5 (1,2,3)

$$<(1,2,3)> = \{(1,2,3),(1,2,3)\circ(1,2,3),(1,2,3)\circ(1,2,3)\circ(1,2,3)\} = \{(1,2,3),(1,3,2),(1)\}$$

$$C(\{(1,2,3),(1,3,2),(1)\}) = 3. \text{ This means the order of } (1,2,3) \text{ is } 3.$$

2.2.6 (1,3,2)

$$<(1,3,2)>=\{(1,3,2),(1,3,2)\circ(1,3,2),(1,3,2)\circ(1,3,2)\circ(1,3,2)\}=\{(1,3,2),(1,2,3),(1)\}$$

$$C(\{(1,3,2),(1,3,2),(1)\})=3. \text{ This means the order of } (1,3,2) \text{ is } 3.$$

2.3 Inverses

From the table in Section 2.1, it is evident that the inverses of the elements are as follows:

Element	Inverse		
(1)	(1)		
(1,2)	(1,2)		
(1,3)	(1,3)		
(2,3)	(2,3)		
(1, 2, 3)	(1, 3, 2)		
(1, 3, 2)	(1, 2, 3)		